An Inexact Successive Quadratic Approximation Method for Convex L-1 Regularized Optimization

نویسندگان

  • Richard H. Byrd
  • Jorge Nocedal
  • Figen Oztoprak
چکیده

We study a Newton-like method for the minimization of an objective function φ that is the sum of a smooth convex function and an `1 regularization term. This method, which is sometimes referred to in the literature as a proximal Newton method, computes a step by minimizing a piecewise quadratic model qk of the objective function φ. In order to make this approach efficient in practice, it is imperative to perform this inner minimization inexactly. In this paper, we give inexactness conditions that guarantee global convergence and that can be used to control the local rate of convergence of the iteration. Our inexactness conditions are based on a semi-smooth function that represents a (continuous) measure of the optimality conditions of the problem, and that embodies the soft-thresholding iteration. We give careful consideration to the algorithm employed for the inner minimization, and report numerical results on two test sets originating in machine learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Regularized Newton Methods for Convex Minimization Problems with Singular Solutions

This paper studies convergence properties of regularized Newton methods for minimizing a convex function whose Hessian matrix may be singular everywhere. We show that if the objective function is LC2, then the methods possess local quadratic convergence under a local error bound condition without the requirement of isolated nonsingular solutions. By using a backtracking line search, we globaliz...

متن کامل

Primal-dual regularized SQP and SQCQP type methods for convex programming and their complexity analysis

This paper presents and studies the iteration-complexity of two new inexact variants of Rockafellar’s proximal method of multipliers (PMM) for solving convex programming (CP) problems with a finite number of functional inequality constraints. In contrast to the first variant which solves convex quadratic programming (QP) subproblems at every iteration, the second one solves convex constrained q...

متن کامل

Rescaled proximal methods for linearly constrained convex problems

We present an inexact interior point proximal method to solve linearly constrained convex problems. In fact, we derive a primal-dual algorithm to solve the KKT conditions of the optimization problem using a modified version of the rescaled proximal method. We also present a pure primal method. The proposed proximal method has as distinctive feature the possibility of allowing inexact inner step...

متن کامل

A Doubly Inexact Interior Proximal Bundle Method for Convex Optimization

We propose a version of bundle method for minimizing a non-smooth convex function. Our bundle method have three features. In bundle method, we approximate the objective with some cutting planes and minimize the model with some stabilizing term. Firstly, it allows inexactness in this minimization. At the same time, evaluations of the objective and the subgradient are also required to generate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013